Quantitative Measurement of GPCR Endocytosis via Pulse-Chase Covalent Labeling

نویسندگان

  • Hidetoshi Kumagai
  • Yuichi Ikeda
  • Yoshihiro Motozawa
  • Mitsuhiro Fujishiro
  • Tomohisa Okamura
  • Keishi Fujio
  • Hiroaki Okazaki
  • Seitaro Nomura
  • Norifumi Takeda
  • Mutsuo Harada
  • Haruhiro Toko
  • Eiki Takimoto
  • Hiroshi Akazawa
  • Hiroyuki Morita
  • Jun-ichi Suzuki
  • Tsutomu Yamazaki
  • Kazuhiko Yamamoto
  • Issei Komuro
  • Masashi Yanagisawa
  • Nathalie Signoret
چکیده

G protein-coupled receptors (GPCRs) play a critical role in many physiological systems and represent one of the largest families of signal-transducing receptors. The number of GPCRs at the cell surface regulates cellular responsiveness to their cognate ligands, and the number of GPCRs, in turn, is dynamically controlled by receptor endocytosis. Recent studies have demonstrated that GPCR endocytosis, in addition to affecting receptor desensitization and resensitization, contributes to acute G protein-mediated signaling. Thus, endocytic GPCR behavior has a significant impact on various aspects of physiology. In this study, we developed a novel GPCR internalization assay to facilitate characterization of endocytic GPCR behavior. We genetically engineered chimeric GPCRs by fusing HaloTag (a catalytically inactive derivative of a bacterial hydrolase) to the N-terminal end of the receptor (HT-GPCR). HaloTag has the ability to form a stable covalent bond with synthetic HaloTag ligands that contain fluorophores or a high-affinity handle (such as biotin) and the HaloTag reactive linker. We selectively labeled HT-GPCRs at the cell surface with a HaloTag PEG ligand, and this pulse-chase covalent labeling allowed us to directly monitor the relative number of internalized GPCRs after agonist stimulation. Because the endocytic activities of GPCR ligands are not necessarily correlated with their agonistic activities, applying this novel methodology to orphan GPCRs, or even to already characterized GPCRs, will increase the likelihood of identifying currently unknown ligands that have been missed by conventional pharmacological assays.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-instant surface-selective fluorogenic protein quantification using sulfonated triarylmethane dyes and fluorogen activating proteins.

Agonist-promoted G-protein coupled receptor (GPCR) endocytosis and recycling plays an important role in many signaling events in the cell. However, the approaches that allow fast and quantitative analysis of such processes still remain limited. Here we report an improved labeling approach based on the genetic fusion of a fluorogen activating protein (FAP) to a GPCR and binding of a sulfonated a...

متن کامل

Pulse-labeling of kinetoplast DNA: localization of 2 sites of synthesis within the networks and kinetics of labeling of closed minicircles.

Short pulse-labeling of log phase Crithidia fasciculata cells with [3H]thymidine allowed the autoradiographic visualization of 2 sites of replication of kinetoplast DNA situated at the periphery of the networks and separated by 180 degrees. Longer pulse-labeling led to the previously reported total peripheral labeling pattern. Pulse-labeled networks possess an intermediate density in ethidium b...

متن کامل

Asialoglycoprotein receptor phosphorylation and receptor-mediated endocytosis in hepatoma cells. Effect of phorbol esters.

The asialoglycoprotein (ASGP) receptor on Hep G2 cells undergoes constitutive recycling and ligand endocytosis in the presence of phorbol dibutyrate, at a 50% reduced rate relative to control cells (Fallon, R. J., and Schwartz, A. L. (1986) J. Biol. Chem. 261, 15081-15089). The relevance of receptor phosphorylation to these events was investigated by selective immunoprecipitation of surface rec...

متن کامل

G-protein Coupled Receptor Dimerization

A growing body of evidence suggests that GPCRs exist and function as dimers or higher oligomers. The evidence for GPCR dimerization comes from biochemical, biophysical and functional studies. In addition, researchers have shown the occurrence of heterodimerization between different members of the GPCR family. Two receptors can interact with each other to make a dimer through their extracellular...

متن کامل

Multidimensional Tracking of GPCR Signaling via Peroxidase-Catalyzed Proximity Labeling

G-protein-coupled receptors (GPCRs) play critical roles in regulating physiological processes ranging from neurotransmission to cardiovascular function. Current methods for tracking GPCR signaling suffer from low throughput, modification or overexpression of effector proteins, and low temporal resolution. Here, we show that peroxidase-catalyzed proximity labeling can be combined with isobaric t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015